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Abstract. A brief review to string and parton percolation is presented. After a short introduction, the
main consequences of percolation of color sources on the following observables in A–A collisions: J/ψ
suppression, saturation of the multiplicity, dependence on the centrality of the transverse momentum
fluctuations, Cronin effect and transverse momentum distributions, strength of the two and three body
Bose–Einstein correlations and forward–backward multiplicity correlations, are presented. The behavior
of all of them can be naturally explained by the clustering of color sources and the dependence of the
fluctuations of the number of these clusters on the density.

PACS. 2 5.75.-q, 12.38.Mh, 24.85.+p

1 Introduction

What conditions are necessary in the pre-equilibrium
stage to achieve deconfinement and perhaps subsequent
quark–gluon plasma formation? This question of the oc-
currence of color deconfinement in nuclear collisions with-
out assuming prior equilibration has been addressed on
the basis of two closely related concepts, string or parton
percolation [1,2] and parton saturation [3–5]. In this paper
we will study the first subject.

Consider a flat two dimensional surface S (the trans-
verse nuclear area), on which N small discs of radius r0
(the transverse partonic or string size) are randomly dis-
tributed, allowing for overlapping. With increasing density
n ≡ N/πR2 (we take here S = πR2), clusters of increas-
ing size appear. The crucial feature is that this cluster
formation shows critical behavior: in the limit N → ∞
and R → ∞ with n finite, the cluster size diverges at a
certain critical density. The percolation threshold is given
by

ηc = πr20
N

πR2 , (1)

and its value, 1.13, is determined by numerical studies.
For finite N and R, percolation sets in when the largest
cluster spans the entire surface from the center to the
edge. Because of overlap, a considerable fraction of the
surface is still empty at the percolation point, in fact, at
the threshold, only 1 − exp(−ηc) � 2/3 of the surface is
covered by discs.

In high energy nuclear collision, the strings or partons
originate from the nucleons within the colliding nuclei;
therefore their distribution on the transverse area of the
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collision is highly non-uniform, with more nucleons and
hence more strings or partons in the center than in the
edge. In this case the value of ηc becomes higher [6].

2 Local parton percolation
and J/ψ suppression

Hard probes, such as quarkonia, probe the medium locally,
and thus test only if it has reached the percolation point
and the resulting geometric deconfinement at their loca-
tion. It is thus necessary to define a more local percolation
criterion [7].

As we mentioned before, at the percolating critical
density, 1/3 of the surface remains empty. Hence disc
density in the percolating cluster must be greater than
(3/2)(ηc/πr20). In fact numerical studies show that perco-
lation sets in when the density of partons in the largest
cluster reaches the critical value 1.72/πr20, slightly larger
than (3/2)(1.13/πr20). This result provides the required
local test: if the parton density at a certain point in the
transverse nuclear collision plane has reached this level,
the medium there belongs to a percolating cluster and
hence to a deconfined parton condensate. In Fig. 1 the
percolation probability and its derivative as a function of
η are shown.

Let us apply the above idea to J/ψ suppression in A–
A collisions [8]. We denote by ns(A) the density of nucle-
ons in the largest cluster within the transverse plane and
by dNq(x,Q2)/dy the parton distribution functions. (At
central rapidity y = 0, we have x = kT/

√
s, where kT de-

notes the transverse momentum of the partons and thus
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Fig. 1. Percolation probability and its derivative as a function
of η

kT � Q.) The local parton percolation condition is

ns(A)
(

dNq(x,Q2
c)

dy

)
x=Qc/

√
s

=
1.72

π/Q2
c
. (2)

For a given A–A collision at a fixed centrality and en-
ergy, the relation (2) determines Qc.

For Pb–Pb collisions at
√
s = 17.4 GeV, Qc � 0.7 GeV.

The scales of the charmonium states χc and ψ′, as deter-
mined by the inverse of their radii calculated in poten-
tial theory, are around 0.6 GeV and 0.5 GeV respectively;
therefore the parton condensate can thus resolve these
states and all χ and ψ′ states formed inside the perco-
lating cluster disappear. The location is determined by
the collision density. The first onset of J/ψ suppression
in Pb–Pb collisions at SPS should occur at Npart � 125,
where the J/ψ′s due to feed-down from χc and ψ′ states in
the percolating cluster are eliminated. Directly produced
J/ψ′s survive because of their smaller radii (leading to a
scales of 0.9–1.0 GeV) and its dissociation requires more
central collisions, which lead to a better resolution, i.e. to
an increase of Qc. For Qc = 1.0 GeV we need Npart � 320.
The resolution scale of the direct J/ψ cannot be reached
in S–U collisions; therefore only a one-step pattern sup-
pression is obtained for this case.

For Au–Au collisions at RHIC, the increased parton
density shifts the onset of percolation to a higher reso-
lution scale, so that from the threshold on, all charmo-
nium states including J/ψ′s are suppressed, starting at
Npart � 90, i.e. a single-step suppression pattern occurs.

For the case of In–In collisions at SPS energies, the
threshold for directly produced J/ψs is not reached even
for the most central collisions, and again a single-step sup-
pression pattern is expected.

A detailed discussion and comparison with experimen-
tal data can be found in [7, 9].

3 String percolation

Multiparticle production is currently described in terms
of color strings stretched between partons of the projectile
and target, which decay into new strings through q–q̄ pro-
duction and subsequently hadronize to produce observed

hadrons. Color strings may be viewed as small discs in
the transverse space, πr20, r0 = 0.2–0.25 fm, filled with
the color field created by the colliding partons. Particles
are produced by the Schwinger mechanism [10] emitting
qq̄ pairs in this field. With growing energy and/or atomic
number of colliding particles, the number of strings grows
and they start to overlap, forming clusters. At a critical
density a macroscopic cluster appears that marks the per-
colation phase transition.

The percolation theory governs the geometrical pat-
tern of the string clustering. Its observable implications,
however, require the introduction of some dynamics to de-
scribe the string interaction, i.e., the behavior of a cluster
formed by several overlapping strings.

It is assumed that a cluster behaves as a single string
with a higher color field Qn corresponding to the vectorial
sum of the color charge of each individual Q1 string. The
resulting color field covers the area Sn of the cluster. As
Qn =

∑n
i Q1, and the individual string colors may be

oriented in an arbitrary manner respective to one another,
the average Q1iQ1j is zero, and Qn

2 = nQ1
2.

Knowing the charge color
→
Qn, one can compute the

particle spectra produced by a single cluster of such color
charge and area Sn using the Schwinger formula. For the
multiplicity µn and average p2

T of particles, 〈p2
T〉n, pro-

duced by a cluster of n strings one finds [11,12]

µn =
√
n
Sn

S1
µ1, , 〈p2

T〉n =
√
nS1

Sn
〈p2

T〉1, (3)

where µ1 and 〈p2
T〉1 are the mean multiplicity and mean

p2
T of particles produced by a single string with a trans-

verse area S1 = πr20. For strings just touching each other
Sn = nS1 and hence µn = nµ1, 〈p2

T〉n = 〈p2
T〉1 as ex-

pected (simple fragmentation of n independent strings).
In the opposite case of maximum overlapping, Sn = S1
and therefore µn =

√
nµ1, 〈p2

T〉n =
√
n〈p2

T〉1, so that the
multiplicity as a result is maximally suppressed. Notice
that a certain conservation rule holds:

µn

n
〈p2

T〉n = µ1〈p2
T〉1, (4)

and also the scaling law

〈p2
T〉n/µnSn = 〈p2

T〉1/µ1S1. (5)

In the limit of high density

〈nS1/Sn〉 =
η

1 − exp(−η) ≡ 1
F 2(η)

,

η = NSπr20/πR2. (6)

Thus

µ = NSF (η)µ1 ; 〈p2
T〉 = 〈p2

T〉1/F (η). (7)

The universal scaling law (5) is valid for all projec-
tiles and targets, different energies and centralities, being
in reasonable agreement with the experimental data [13].
A similar scaling is found in the color glass condensate
approach [14].
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Fig. 2. Cluster formation for low, intermediate and high den-
sity respectively

Notice that NS ∼ Ncoll ∼ N
4/3
A at central rapidity (at

the fragmentation region NS ∼ Npart ∼ NA). As F (η) ∼
N

1/3
A , µ ∼ NA.

Therefore, the multiplicity per participant does not
depend on the number of participants; there is satu-
ration. Numerical studies show a good agreement with
SPS and RHIC data [12]. The prediction for central Pb–
Pb collisions (NA = 400) at LHC (

√
s = 5.5 GeV) is

µ/0.5Npart = 8.6 and the total charged multiplicity per
unit rapidity (at central rapidity) is 1800. These numbers
are very similar to the ones obtained from Hera data, as-
suming scaling, using PQCD and the BK equation [16,17].

4 Transverse momentum fluctuations

The behavior of the transverse momentum fluctuations
can be understood as follows: At low densities most of the
particles are produced by individual strings with the same
〈pT〉1, so the fluctuations must be small. Similarly, at large
density, above the percolation critical point, there is essen-
tially one cluster formed by almost all the strings created
in the collision and therefore fluctuations are not expected
either. Indeed, the fluctuations are expected to be maxi-
mal when the number of different clusters becomes larger,
just below the percolation critical density (see Fig. 2). In
this case in addition to the normal fluctuations around the
mean transverse momentum of a single string, there are
more fluctuations due to the different average transverse
momentum of each cluster.

Experimentally, a measurement has been made of the
quantity

Fpt ≡ ωData − ωrandom

ωrandom
, ω =

√〈p2
T〉 − 〈pT〉2
〈pT〉 , (8)

where ωrandom denotes the corresponding normalized fluc-
tuations in the case of statistically independent particle
emission.

In Fig. 3 our result [18] compared with the experimen-
tal data is shown. A reasonable agreement is obtained.
There is an alternative explanation based on the occur-
rence at RHIC of minijets which will enhance the pT fluc-
tuations. At high centrality, it is well established that the
suppression of high pT particles at RHIC can explain the
suppression of fluctuations seen at lower centralities. Ac-
cording to this picture, at SPS where the production of
minijets is negligible, this behavior is not expected, con-
trary to the expectations of percolation of strings.
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Fig. 3. FpT(0/0) versus the number of participants. Experi-
mental data from PHENIX at

√
s = 200 GeV. Solid line is for

our results

Instead of pT fluctuations, the NA49 Collaboration [19]
have measured (〈n2

−〉 − 〈n−〉2)/〈n−〉 at SPS for Pb–Pb
collisions, as a function of the centrality of the collision,
showing a maximum at low centrality and being 1 at high
centrality. This behavior has nothing to do with minijets.
On the contrary, it is explained naturally in our approach
[20].

5 Universal transverse momentum
distributions

In order to know the transverse momentum distributions
one needs the fragmentation function f(x, pT) for each
cluster, and the mean squared transverse momentum dis-
tribution of the clusters, W (x), which is related to the
cluster size distribution through (3). For f(x, pT) we as-
sume the Schwinger formula, f(x, pT) = exp(−p2

Tx), used
also for the fragmentation of a Lund string [21], at first
approximation x is related to the string tension or equiva-
lently to the inverse of the mean transverse momentum
squared. For the weight function W (x) we choose the
gamma distribution

W (x) =
γ

Γ (k)
(γx)k−1 exp(−γx). (9)

The reason of this choice is the following: In peripheral
heavy ion collisions there is almost no overlapping between
the formed strings and therefore the cluster size distribu-
tion is peaked around low values. Most of the clusters are
made of one single string. As the centrality increases the
number of strings grows, so there are more and more ones
overlapping among the strings, and the cluster size dis-
tribution is strongly modified, according to Fig. 4 where
three cluster distributions corresponding to three different
centralities of the collision are shown. Each curve in Fig. 4
can be reproduced by gamma distributions with different
k values.

Moreover, the increase of centrality can be seen as a
transformation of the cluster size distribution of the type

P (x) → xP (x)
〈x〉 → . . . → xkP (x)

〈xk〉 → . . . . (10)
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Fig. 4. Schematic representation of the number of clusters as
a function of the number of strings of each cluster at three
different centralities (the solid line corresponds to the most
peripheral one and the pointed line to the most central one)

This kind of transformation were studied long time
ago by Jona-Lasinio in connection to the renormalization
group in probabilistic theory [22]. Actually an increase of
the centralities is equivalent to a transformation which
changes cells (single strings) by blocks (clusters) and the
corresponding variables µ1 and 〈p2

T〉1 of the cells by µn and
〈p2

T〉n. These transformations of the type of the chain (10)
have been used also to study the probability associated to
events which satisfy some requirements [23].

The γ and k parameters of the gamma distribution are
related to the mean x and dispersion of the distribution
through

〈x〉 =
k

γ
,

〈x2〉 − 〈x〉2
〈x〉2 =

1
k
. (11)

We use (7) to take into account the effect of overlap-
ping of strings, and hence f(x,mT) = exp(−p2

TxF (η)).
Therefore we obtain

1(
1 + F (η)p2

T
k〈p2

T〉1

)k
(12)

=
∫ ∞

0
dx exp(−p2

TxF (η))
γ

Γ (k)
(γx)k−1 exp(−γx),

and the normalized pT distribution is

f(pT, y) =
dN
dy

(k − 1)F (η)
k〈p2

T〉1
1(

1 + F (η)p2
T

k〈p2
T〉1

)k
. (13)

Equation (12) can be seen as a superposition of chaotic
color sources (clusters) where 1/k fixes the transverse mo-
mentum fluctuations. At small density η << 1, the strings
are isolated and there are no fluctuations, k → ∞. When
the density increases, there will be some overlapping of

strings forming clusters; the fluctuations increase and k
decreases. The minimum of k will be reached when the
fluctuations in the number of strings per cluster reach its
maximum. Above this point, increasing η, these fluctua-
tions decrease and k increases. In the limit, when only one
cluster of all strings is formed, there are no fluctuations
and again k → ∞.

The obtained power-like behavior (p2
T)−k, with an ex-

ponent k related to some intrinsic fluctuations, is com-
mon to many apparently different systems, as sociologi-
cal, biological or informatic ones. Distributions like the
citations of scientific works, or other complex networks
[25, 26] where the probability P (m) of having a given
node with m links is described by the free scale power law
P (m) ∼ (m)−k with k related to the fluctuations in the
number of links obey the same behavior. Also, it has been
shown [27,28] that maximization of the non-extensive in-
formation Tsallis entropy leads to the same distribution
(12).

This universal behavior indicates the importance of
the common features present in those phenomena, namely,
the cluster structure and the fluctuations in the number
of objets per cluster.

From (13) one can calculate

d ln f
d ln pT

=
−2F (η)(

1 + F (η)
k

p2
T

〈p2
T〉i

) 〈p2
T〉

〈p2
T〉1i

, (14)

where “i” refers to the different particle species.
As p2

T → 0 this reduces to −2F (η)p2
T/〈p2

T〉i.
This behavior has been confirmed by the PHOBOS

Collaboration. As 〈p2
T〉1p ≥ 〈p2

T〉1k ≥ 〈p2
T〉1π the abso-

lute value is larger for pions than for kaons and than for
protons.

Now, let us discuss the interplay between low and high
pT. One defines the ration RCP (pT) between central and
peripheral collisions as

RCP (pT) =
f ′(pT, y = 0)/N ′

coll

f(pT, y = 0)/Ncoll
, (15)

where the distribution in the numerator corresponds to
higher densities η′ > η. In the pT → 0 limit, taking into
account that 2

3 ≤ k−1
k ≤ 1 and that F (η′) < F (η), we

obtain

RCP (0) �
(
F (η′)
F (η)

)2

< 1, (16)

approximately independent of k and k′. As η′/η increases,
the ratio RCP (0) decreases, in agreement with the exper-
imental data.

As pT increases we have

RCP (pT) ∼ 1 + F (η)p2
T/〈p2

T〉1i

1 + F (η′)p2
T/〈p2

T〉1i
, (17)

and RCP (pT) increases with pT (again, F (η) > F (η′)).
At large pT,

RCP (pT) ∼ F (η)
F (η′)

k′

k
(p2

T)k−k′
, (18)
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which means that if we are in the low density regime k > k′
and RCP (pT) > 1, and we reproduce the Cronin effect.
As we increase the energy, the density increases and one
reaches the high density regime where k′ < k and suppres-
sion of pT occurs. The Cronin effect disappears at high en-
ergies and/or densities. The critical density at which the
Cronin effect disappears is the same at which the trans-
verse momentum fluctuations presents a maximum.

RCP (pT) for two different particles, for instance p and
π, becomes, at intermediate pT,

Rp
CP (pT)

Rπ
CP (pT)

�
( 〈p2

T〉1p

〈p2
T〉1π

)k′−k

. (19)

As 〈p2
T〉1p > 〈p2

T〉1π, in the high density limit (Au–Au
collisions with k′ > k) we expect a ratio larger than 1, as
the experimental data show.

As far as we approach the low density limit, the ratio
decreases, becoming closer to 1 or even lower.

A more detailed comparison with experimental data
on Au–Au, d–Au collisions with discussion of the forward
rapidity region can be found in [24]. An overall reasonable
agreement is obtained. It is very remarkable that such an
agreement is based on the universal behavior of the pT
distribution given by (13).

6 Bose–Einstein correlations

Most of the studies of two body Bose–Einstein (B–E)
correlations have paid attention to the parameters Rside,
Rout, RL and not to the strength of the correlation, de-
fined by the chaoticity parameter

C2(0, 0) = λ. (20)

Experimentally, due to Coulomb interference and to
the necessary extrapolations there are many uncertainties
in its evaluation; however, some trend of the dependence of
λ on the multiplicity can be established. First, SPS mini-
mum bias data for O–C, O–Cu, O–Ag and O–Au collisions
show that λ decreases as the size of the target increases,
from λ = 0.92 up to λ = 0.16. However for S–Pb and Pb–
Pb central collisions, where the values of η are larger, λ is
also larger: λ � 0.5–0.7.

This behavior can easily be explained in the percola-
tion framework [29]. Each cluster can be considered as a
chaotic source, λ = 1, and the production of particles from
several clusters can be seen as the superposition of chaotic
sources. In this scheme, λ = ns/n, being ns the number of
pairs produced in the same cluster and nT the total num-
ber of pairs. In this way, λ is proportional to the inverse
of the number of independent sources (clusters); therefore
it decreases with the density up to the critical percolation
value. From this critical value, it increases with density.
This behavior is shown in Fig. 5.

Similar considerations can be done concerning the
strength of the three body B–E correlations, ω. The
NA44 Collaboration have obtained for S–Pb collisions
ω = 0.20 ± 0.02 ± 0.19 and for central Pb–Pb collisions
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Fig. 5. λ as a function of η. Experimental points are for semi-
central S–Pb collisions (filled triangle), 18% central Pb–Pb
collisions (non-filled circle) and 10% central Pb–Pb collisions
(filled box) at SPS
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Fig. 6. ω as a function of η. Experimental points are for S–Pb
semicentral collisions and 9% central Pb–Pb collisions at SPS

ω = 0.85 ± 0.02 ± 0.21. The STAR Collaboration obtain
for central Au–Au collisions values of ω close to 1. This
sharp variation from ω = 0.2 to ω = 0.8–1 in a small range
of η is easily explained in the framework of percolation of
strings. Now ω becomes proportional to the inverse of the
squared of the number of independent sources (clusters)
which can accommodate a stronger variation compared to
the case of two bodies. In Fig. 6 our result is shown [30].

7 Forward–backward correlations

A useful observable to check the percolation approach is
the forward–backward correlation measured by the quan-
tity

DFW = 〈nFnB〉 − 〈nF〉〈nB〉, (21)

where nF(B) denotes the multiplicity in a forward (back-
ward) rapidity interval. In order to eliminate the short
range correlations, the forward and backward intervals
should be separated by at least one unit of rapidity. On
general grounds, one can see that DFW is proportional to
the fluctuations on the number of independent sources (or
clusters in our case) [31, 32]. At very low density, DFW
should be very small, increasing with the density up to
a maximum related to the largest number of clusters. At
very high density, there are essentially only clusters and
hence DFW becomes small again.
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There are some experimental data measuring the pa-
rameter b, through

〈µB〉F = a+ bµF, (22)

where b ≡ DFB/DFF. The data on pp and pA show an
increase of b with energy and density. Our prediction for
high density is that b will decrease. Measurements of DFW
or b as a function of centrality would be welcome.

8 Conclusion

The percolation of partons and strings can correctly de-
scribe several observables, namely J/ψ suppression, mul-
tiplicities, transverse momentum fluctuations, transverse
momentum distributions and B–E correlations. The be-
havior of all of them has a common physical basis: the
clustering of color sources and the dependence of the num-
ber of clusters on the density. In this way, the threshold
of J/ψ suppression, the maximum of transverse momen-
tum fluctuations, the suppression of the Cronin effect and
the turnover of the dependence of the strength of two and
three body correlation with the energy are related to each
other and all of them point out a percolation phase tran-
sition. Another test of this transition is the measurements
of forward–backward correlations and also the multiplicity
distributions not discussed here [33].

Many of the results obtained in the framework of per-
colation of strings are very similar to the one obtained in
the color glass condensate (CGC). In particular, very sim-
ilar scaling laws are obtained for the product and the ratio
of the multiplicities and transverse momentum. For this
reason, it is very tempting to identify the momentum Qs
which established the scale in CGC with the correspond-
ing one in percolation of string. In this way

Q2
s =

k〈p2
T〉1

F (η)
. (23)

The consequences of (23) are under study.
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